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Abstract. We demonstrate how the size of certain global optimization problems can substantially be 
reduced by using dualization and polyhedral annexation techniques. The results are applied to develop 
efficient algorithms for solving concave minimization problems with a low degree of nonlinearity. This 
class includes in particular nonconvex optimization problems involving products or quotients of affine 
functions in the objective function. 
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1. Introduction 

For minimizing a concave function over a polytope several methods have been 
developed in the past twenty years (see [5] and references therein). From the 
computational experiments reported in [3] it seems that one of the promising 
approaches is by polyhedral annexation ([15] and also [5]). 

The term “polyhedral annexation” comes from the fact that this method builds 
up a sequence of expanding polytopes 

P, c P2 c ’ . . c Pk c ’ . ’ 

by “annexing” more and more vertices of D to an initial polytope P, until an 
optimal vertex is identified. Although the basic idea of this method was put 
forward as early as in [14], an implementable version of it was developed only 
recently [15]. The new technique introduced in the polyhedral annexation method 
presented in the latter paper was to associate with the sequence of polytopes P, 
the dual sequence of their polars 

s, 3 s, . . . 3 s, . . . 

An advantage of this dualization procedure is that it converts the subproblem of 
computing the facets of Pk into that of computing the vertices of S,, which is an 
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easier problem for which reasonably efficient solution procedures already exist 
([4] and also [5]). 

The aim of this paper is to demonstrate another significant advantage of this 
dualization procedure. Namely, it turns out that by dualization the original 
n-dimensional problem under certain conditions can be transformed into a 
problem of substantially smaller dimension. This is of course very important, 
considering the well known “curse of dimensionality” in global optimization. 

This work is written under the stimulus of some recent results of Konno and 
Kuno [6] (followed by [7,8]) and of Thach and Burkard [13]. In the paper [6] the 
authors give a surprisingly simple procedure for minimizing the product of two 
linear functions over a polytope. On the other hand, an efficient method is 
presented in [13] for treating a related problem, where the product of two linear 
functions appears in the constraints rather than in the objective function. Both 
approaches look very attractive, though the techniques used are quite different. 
While Konno and Kuno convert the original problem into a linear parametric 
program, Thach and Burkard reduce, by means of dualization, the original 
problem to a concave minimization problem of only two variables, which, due to 
its small size, can readily be solved by currently available methods. 

In Section 2 we shall review the basic ideas of polyhedral annexation. Next, in 
Section 3 we shall show how the dualization technique underlying this procedure 
can be used to reduce the dimensionality of certain classes of global optimization 
problems. In Section 4 this dimension reduction technique is applied to concave 
minimization problems with a relatively mild degree of nonlinearity. Finally, 
Section 5 is devoted to linear multiplicative and fractional programming prob- 
lems. These form a class of problems for the study of which dualization turns out 
to be particularly useful. 

2. Basic Ideas of Polyhedral Annexation 

In this section we review the basic ideas of polyhedral annexation as presented in 
1151 (see also [5]). 

Consider the quasiconcave minimization problem 

(P) minimize f(x) subject to x E D , 

where D is a polytope (bounded polyhedron) in R" and f(x) is a quasiconcave 
function defined and continuous on a closed convex set $I containing D. 

As can easily be seen, the core of this problem is the following sub-problem of 
“transcending the incumbent”: 

Given a vertex X of D which represents the best feasible solution known so far 
(incumbent), find a point x E D such that f(x) < f( -) x or else establish that no such 
point exists, i.e. X is a global optimal solution. 

Setting G = {x E a: f(x) Zf(X)} we can also restate that subproblem in the 
following form: 
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(#P) Check whether D C G and if not find a point x E D\ G . 

Since G is a closed convex set this is a special GCP (Geometric Complementarity 
Problem) studied in [17]. 

Without loss of generality we can assume that the origin 0 belongs to D and 
that f(O) > fW, i.e. 0 E D n int G. 

For solving (#P) the idea of polyhedral annexation [15] is to construct a 
sequence of expanding polyhedrons 

P,CP,c..-P,C.**CG, (1) 

such that eventually a polyhedron Ph will be obtained satisfying D C Ph C G, or 
else a point xh will be found satisfying xh E D\ G. 

The initial polyhedron P, is chosen so that P, C G, 0 E int P, and the facets of 
P, are known or can readily be computed. Suppose that Pk has been constructed 
and is given by a system of linear inequalities of the form: 

u’x 5 1 (u E v/J ) (2) 

where u E V, if and only if the hyperplane u’x = 1 passes through a facet of P,. 
We shall refer to (2) as the defining system for P,. 

For each u E V, let p(u) = max{u’x: x E D}. If p(u) 5 1 then D C {x: u’x 5 
l}, therefore, if p(u) 5 1 for all u E V, then D C Pk C G. Otherwise, let 

uk E argmax{ p(u) : u E V,} , (3) 

xk E argmax{(u”)‘x: x E D} . (4) 

If xk g G then we terminate: xk solves (#P). Otherwise, we take the intersection 
?Zk of the ray l?(xk) from 0 through xk with the boundary aG of G (if this 
intersection does not exist, we let ik be the direction of lY(xk)). Now define 

P ki-I = conv(P, U {ik}) . (5) 

To obtain the defining system for Pk+l we consider the polar set Sk of Pk: 

S,={y: y*X~l~XEPk}. 

Since 0 E int Pk it is known that Sk is a polytope containing 0 ([ll], Corollary 
14.5.1) and from (5) it follows that 

S k+l = s, n {y : (Rk)Ty 5 i*> , (6) 
where the star * indicates that 1 should be replaced by 0 if ik is a direction. 
Furthermore, by the duality correspondence between facets of a polyhedron and 
vertices of its polar (see, e.g., [15,5]) we know that V, is precisely the set of 
nonzero vertices of Sk (for brevity we shall simply say “vertex set” to mean the 
set of nonzero vertices). In view of (6) the vertex set Vk+l of Sk+ 1 can then be 
derived from V, using for example the procedure of Horst-Thoai-de Vries [4,5]. 
Then the defining system for Pktl is 
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u’x 5 1 (u E V,,,) . 

The procedure can.now be repeated with Pk+l replacing Pk. 
In terms of the sequence S, > S, > * * * the above polyhedral annexation proce- 

dure can be summarized as follows. 

PA ALGORITHM (for solving (#P). Start with a polyhedron P, such that 
P, C G, 0 E int P, and let S, be the polar of P, (the vertex set VI of S, should be 
readily available). Set Vi = VI, k = 1. 

Step k. 1. For each u E V; solve the linear program 

Wu) max{uTx:xED}, 

obtaining its optimal value p(u) and basic optimal solution x(u). 
Step k.2. Compute uk according to (3). Let xk=x(uk). If &uk)5 1 then 

conclude that D C G. Otherwise continue. 
Step k.3. If xk$G then terminate: xk solves (#P). Otherwise find the intersec- 

tion ik of the ray l?(xk) with aG(if lY(xk) C G then let ik be the direction of I’(xk)) 
and define Sktl by (6). Compute the vertex set V,,, of Sk+, (from knowledge of 
V,). Let VL+l = V,+,\V,. Set ktk + 1 and return to Step k.1. 

THEOREM 1. The PA Algorithm terminates after finitely many steps. 
Proof. This follows from the fact that each xk is a vertex of D and there is no 

repetition in the sequence {x”}. 

REMARK. The condition 0 E int P, is to ensure the boundedness of S, . An 
alternative variant of the PA Algorithm allows for a weaker condition: 

OEP,, int P, # 0 , 

but then, since Sk may be unbounded, the defining system (2) for Pk is 

u’X~l*(UEVk)) 

where V, now denotes the set of all vertices and extreme directions of Sk and 1 * 
stands for 1 if u is a vertex, 0 if u is an extreme direction (accordingly, in Step k.2, 
D C G if p(u”)5 l*). 

3. Dualization and Dimension Reduction Technique 

We now discuss an important feature of the PA Algorithm that makes this 
procedure very useful for handling certain problems having a low degree of 
nonlinearity. 

Denote by G” the polar of the convex set G considered above: 

G*={y:yrxIl VXEG}. 
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Since 0 E int P,, P, C G and the sequence { Pk} satisfies condition (1) we have 

s, 3 . . .>Sk>...>G*. (7) 

On the other hand, the function u* p(u) = max{u’x: x E D} is convex as the 
pointwise supremum of a family of linear functions u + u ‘x. Therefore, uk 
defined by (3) is also a maximizer of the convex function u-+ p(u) over the 
polytope S,. Since the polytopes S, form a decreasing sequence approximating 
G” from the outside, we see that the PA Algorithm can be interpreted as an outer 
approximation procedure for checking whether or not the maximum of the convex 
function p(u) over G* is less than or equal to 1 (or equivalently, whether 
G* C D*). Thus, the PA Algorithm operates basically in the space spanned by G* 
rather than in the original space. 

This interpretation underlines an obvious potential advantage of the polyhedral 
annexation approach when the dimension of G* is smaller than IZ. Indeed, in this 
case the original problem in R" is transformed into a problem of lower dimension. 
In global optimization this usually results in a significant saving of computational 
effort. 

To be specific assume that in problem (#P) the convex set G contains a cone 

K = {x: z2.x 5 O(i E Z)} ) 63) 

where the system ui, i E I, contains exactly p linearly independent vectors. Then 
from the inclusion K C G we deduce G* C K*, while from (8) K* is the convex 
cone of dimension p generated by the vectors ui, i E I. Therefore, if p < n the 
original problem (#P) in R" has been converted into a problem in a space of 
reduced dimension. 

As is well known from convex analysis, for a given closed proper concave 
function f(x) with dom f = n the recession cone and the lineality space of the 
(nonempty) level set G = {x E 0: f(x) 2 y} are the recession cone and the 
constancy space of f(x), respectively (1111, Theorem 8.7). Furthermore, the rank 
of G, i.e. the number dimension G - lineality G (which measures the nonlinearity 
of G), is just equal to the dimension of G” ([ll], Corollary 14. 6.1). From the 
above we see that whenever the lineality space of G, i.e. the constancy space of 
f(x), is not trivial (has at least dimension l), so that G has not full rank, then the 
PA approach offers a method for lowering the dimension of the problem ( # P). 

For an effective implementation of this dimension reduction technique an 
important question which we now discuss is the construction of the initial 
polyhedron P, . Clearly such a polyhedron must satisfy certain conditions, 
namely: 

(1) P, C G and 0 E int P, (or at least 0 E P, C G and P, has full dimension; see 
Remark at the end of Section 2); 

(2) the polar of P, can be described by an explicit system of linear inequalities 
and its vertex set VI is simple and can readily be computed. 
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Denote by ul, . . . , up the maximal set of linearly independent vectors among 
the u’, i E I, in (8). Then the linear space generated by ui, i E I, which contains 
K*, can be identified with RP via the isomorphism 

P 

t E RP * r(t) = c tiu’ . 
i=l 

(any u = CiE1 A# of this space can be uniquely represented as a linear combina- 
tion of the ul, . . . , up). 

Let u” = -(u’ + . . . + up) and denote by li’ the point where the boundary 8G 
of G = {x E Q : f(x) 2 f(X)} meets the ray from 0 through ui. Define now 

P, = Ml + L , (10) 

where L = {x: uix = 0 (i = 1, . . . , p)} (the lineality space of K) and M, is the 
convex hull of the set (Li’, t’, . . . , Cp}. Let 

cqj= (u’,Ci’)(i=l,. . . ,p; j=O,l,. . .) p). 

PROPOSITION 1. The polyhedron P, defined by (10) satisfies: P, C G, 0 E int P, 
and its polar is S, = r( T,), where T, is a p-simplex in RP determined by the system 
of inequalities: 

z$ a& 5 1 (j = 0, 1, . . . ) p) . (11) 

Proof. Obviously, M, C G and L C K. Since L is a subspace of the recession 
cone of G it follows that P, = M, + L C G. On the other hand, we have 0 E relint 
[ u”, z.2, . . . , up], hence 0 E relint M, . Now any arbitrary point x of R” can be 
decomposed as x = x’ + X” with x’ E L and x”L’ (orthogonal complement of L). 
But clearly, L 1 is nothing but the linear space spanned by M, so that x” E AM, for 
some h > 0. Since obviously X’ E AL, it follows that x E AP, . Thus, for any x E R” 
there exists h > 0 such that x E AP, . This shows that 0 E int P, . 

Denote by MT the polar of M,. Since L is a subspace and 0 E M, it easily 
follows that the polar of P, is 

S1=MylL? 

hence~~S,ifandonlyifv=CiP_,t~u~and(v,~~)~l(j=O,l,...,p).Thisis 
equivalent to saying that u = n-(t), where t satisfies (11). 

It remains to show that the system (11) determines a p-simplex. Observe that 
any p of the vectors fi’, til, . . . , Lip are linearly independent. Now consider the 
system of equations 

+$ aijti = 1 (j=O, 1,. . . ) p - 1). (12) 

Let (Y i be the p-vector with components aio, ail, . . . , ‘yip -1 . If these vectors were 
linearly dependent, i.e. if there were numbers Ai, not all zero, such that 
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Zip_, hiai=O, then 

i 'iffij = O allj=O,l,..., p-l, 

hence (Cr=, h$, a’) =0 (j=O, 1,. . . , p - 1)) so that the vector Zip_, A$ would 
be orthogonal to all Gj( j = 0, 1, . . . , p - 1). Since this vector belongs to the space 
generated by ul, . . . , up, which is the same as the space generated by 
-0 A.1 u,u,...,u “p-*, it would follow that Cr=, A$ = 0, which cannot hold because 
ul, . . . ) up are linearly independent. Therefore, the vectors a’(i = 1, . . . , p) must 
be linearly independent and the matrix cyij(i = 1, . . . . , p; j = 0, 1, . . . , p - 1) 
must be nonsingular. This implies that the system (12) has a unique solution. 

Analogously, for any j, = 0, 1, . . . , p the system 

2 aijti=l(jE{o?l,e” >P}\{jO}) (13) 

has a unique solution. Clearly, this solution yields the j,-th vertex of the poly- 
hedron T, . That is, T, is a p-simplex (a polytope with exactly p + 1 vertices). 

q 

REMARKS. (i) If for certain j = 0, 1, . . . , p the ray ri = (8~’ : 0 > 0} does not 
meet a G (rj entirely lies in G), then we define I;’ to be the direction of rj; but in 
that event the j-th inequality in (11) should have 0, instead of 1, on the right hand 
side. Alternatively we can set Lji = 8,~’ where 0, is an arbitrarily large positive 
number. 

(ii) The proof shows that the vertices of S, can be obtained by solving each of 
the p + 1 systems of equations (13). 

In applying the PA Algorithm starting from P, (i.e. S,) note that since each 
vertex u of S, is of the form u = Cf=i t,u’, where t = (ti) is a vertex of Tk = 
Fl(S,), the linear program LP(u) to be solved in Step k.1 is 

WV) max 
1 

$i ti( ui, X) : x E D} . 

(iii) When the vectors u’, i E tI, in (8) are linearly independent, it is more 
convenient to take P, = K (then 0 E P, and int P, # 0). 

If a point w E -int K is available (e.g., w is the unique solution of the system 
uiw = 1, i E 1) one can also take P, = G + K, where i$ = Bw E G (0 > 0). The 
polar of P, is then S, = r(T,), with T, being the p-simplex determined by the 
system of linear inequalities: 

$5;) tiz-0 (iEZ). 

Indeed, since u’$ = Bu’w = 8 (i E I), we have that P, is the polyhedron 

uk 5 8 (i E I) ) 

and the result follows. 
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4. Problems Where the Objective Function Has Not a Full Rank 

To illustrate how the above proposed dimension reduction technique can be 
applied, in this and the next section we shall examine some classes of problems 
for which this technique seems to be efficient. 

Consider first the class of concave minimization problems (P) of the form 

minimize f(x) := f,(y) + d’z s.t. Ay + Bz 5 c , (14) 

wherex=(y,z)ERPxRq(p+4=n),fi:RP~Risaconcavefunction,dE 
Rq, c E R” and A, B are matrices of orders m X p and m x 4 respectively. 

As previously, assume that 0 E D : = {x = ( y, z) : Ay + Bz 5 c} , f(0) > y (so 
that 0 is interior to the level set G = {x : f(x) 2 7 }). Moreover, assume that d # 0 
(the case d = 0 is simpler). Since for any y E RP such that Ay I 0 the point 
(y, 0) E RP x Rq belongs to D (note that 0 5 c by the assumption 0 E D), if the 
cone { y : Ay 5 0} has an extreme ray I over which f,(y) is unbounded below then 
f(x) is unbounded below over the ray I x (0) C D and the problem has no finite 
optimal solution. Otherwise, if no such ray exists, then by a known property of 
concave functions ([ll], Section 32) we must have fr( y) 2 f*(O) for every y in the 
cone{y:Ay~O},i.e.f(x)=f,(y)+dTz~f,(O)+O>yforeveryx=(y,z)such 
that Ay 10, dTz 20. This shows that G contains the cone 

K={x=(y,z):AySO, drzZO}, 

whose polar is 

K*={u=(T,s)ER~xR~:T=A~A, s=-ad,hERT, CIER,}. 

If al, . . . ) ah are a maximal set of linearly independent rows of A, then 
(al, O), . . . , (ah, 0) and CO,4 are linearly independent vectors of R” and we have 
that the lineality space of K is 

L={x=(y,z):a’y=O(i=l,. . , ,h), dz=O}. 

Therefore, G* is contained in the space L’ generated by (a’, 0), . . . , (ah, 0) and 
(0, d). This space can be identified with Rh+’ via the isomorphism 

tE Rh+’ ++ n-(t) = $ t,(a’, 0) - th+l(O, d) . 
i=l 

Thus the PA Algorithm applied to this problem will operate in a space of 
dimension h + 15 p + 1 (usually h + 1 is much smaller than p + 4). 

The initial polyhedron P, (and its polar S,) can be constructed as indicated in 
the previous section. However, in the case where the rank of A is exactly p, it is 
simpler to proceed as follows. 

Observe that G contains the cone 

K={x=(y,z): y=O, d=zZ-0)) 

since x E K implies f(x) 2 fi(0) > y. Therefore, G* is contained in the orthogonal 
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complement of the space y = 0, dTz = 0, i.e. in the space which is the direct sum 
of RP and the line (0d: 0 E R}. By Remark (iii) in the previous section, as initial 
polyhedron for the PA Algorithm one can then take P, = G + K, where ti = 19w, 
w = (-e, d) E RP x Rq (e = (1,. . . , 1)) and 0 > 0 is chosen so that f(G) = y. 

EXAMPLE 1. As an example consider in more detail the concave quadratic 
minimization problem 

1 
minimize f(x):= a’x - 5 xTUx s.t. xE D , (15) 

where D is a polyhedron in R”, a E R” and U is a symmetric positive semi-definite 
matrix of rank p < n. 

As previously, assumed 0 E D and y <f(O) (e.g. y = f(X) where X is a vertex of 
D with f(X) <f(O)). 

Since rank U = p, using an affine transformation one could convert f(x) into the 
form f,(y) + dTz with f, : RP -+ R a concave quadratic function of p variables 
Yl, . . . , yp and z E R”-*. Therefore this problem belongs to the class considered 
above. 

In actual practice, however, there is no need to perform this transformation. 
Proceeding directly, we just observe that the level set G = {x: f(x) z r} contains 
the cone 

K={x: lJx=O, a=xZO} 

because x E K implies that f(x) Z 0 > y. The lineality space of K, i.e. the 
constancy space of f(x) is L = {x: Ux = 0, a’x = O}. Let ul, . . . , uh be the maxi- 
mal set of linearly independent vectors among the n rows of U and the vector a 
(h = p + 1 if a is linearly independent from the rows of U, h = p otherwise). Then 
the space L’ that contains G* can be identified with Rh 

h 

t E Rh - r(t) = c tiui . 
i=l 

Let z.4’ = -(u’ + . . . + u”) and let Lii = 8~’ be the points such that f(0u’) = (i = 
O,l,. . . , h). Define P, = M, + L, where M, = [Go, Cl, . . . , Ch]. By Proposition 1, 
the polar of PI is S, = ~(3”~) with T, being the h-simplex 

l$ cx,t,51 (i=O,l,. . . ,h), 

where 

aij = (zi, 2) . 

The detailed algorithm for solving (15) reads as follows. 

ALGORITHM 2 (for solving (15)). By translating if necessary assume 0 E D. Let 
X be a vertex of D such that y = f(X) <f(O) (X is the current best feasible solution; 
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if no such X is readily available, set X = 0, y =f(O) - E where E >O is the 
tolerance, but then an optimal solution is understood within this tolerance). 

0. Define T, by (16). Set A, = Vi = VI = vertex set of T, (computed by solving 
each of the h + 1 systems of equations obtained from (16) by omitting just one 
inequality and setting all the others to equalities). Set k = 1. 

k. 1. For each t E V; solve the linear program 

Wt) maximize Z$1 ti( ui, x) s.t. XED, 

obtaining its optimal value p(t) and basic optimal solution x(t). 
k.2. Delete all t E Vk for which p(t) 5 1. Let 9$ be the collection of remaining 

elements of A,. If %& = 0 then terminate: X is an optimal solution. Otherwise, 
update X and y, using the x(t), t E V;. Go to k.3. 

k.3. Let tk E argmax{ p(t) : t E 9Zk}, xk = x(tk). Compute the point ik where 
the ray from 0 through xk meets the surface f(x) = y (see Remark (i), Section 3). 
Define 

T k+l=Tkfl t:$ ti(u’,ik)Sl* 
i=l 

and compute the vertex set V,,, of Tk+, (from knowledge of V,). 
Set V;+l = V,+,\V,, Jllk+l = 9Zk U IJ’;+~, ktk + 1 and go to k.1. 

REMARK. In Step k.2, if the new current best feasible solution X has improved 
then one can set 

D +-D f-l {x : lk(X) 5 l} ) 

where Ik(x) 5 1 is a y-valid concavity cut for (f, 0) (see [S]). 
Also in Step k.3, when the vertex set Vk+l becomes too numerous, it is 

advisable to restart the whole procedure after translating the origin to a new 
vertex of D (but using the current best feasible solution X, the value y and the 
polyhedron D last obtained). 

The above method seems to be quite efficient when the rank of u is small. In 
particular, if rank U 5 5 then even for fairly large II the procedure should not 
present difficulties since all the potentially difficult computations are done in at 
most 6 dimensions. 

Concave minimization problems where the objective function has not full rank 
occur in many contexts. Let us mention two more examples: 

EXAMPLE 2. Consider the well known bilinear programming problem: 

minimize F((x, y) := hTx + yTUx + g*y s.t. x E X , y E Y , 

where h E R”, g E Rm, U E R”““, and X, Y are polyhedrons in R”, R” respective- 
ly. (see e.g. IS]). This problem is equivalent to the concave minimization problem 
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minimize f(x) s.t. x E X , 
where 

f(x)=h%+inf{yr(g+Ux):yEY}. 

But it can be seen that the constancy space of this concave function is 

L=(x:hTx=O,Ux=O), 

therefore the dimension of the problem can be reduced if rank U < n. 

EXAMPLE 3. In certain game situations, one has to minimize a function of the 
form 

f(x)= sup{dTy: Ax + By5 c} , 

where do Rq, A E R""", BE Rmxq, c E R". To check that this function is 
concave denote by R(x) the optimization problem whose optimal value gives f(x). 
For any x’, x” and 0 < (Y < 1, let y’, y” solve R(x'), R(x") respectively. Then 
ay’ + (1 - e)y” is feasible to R(ax' + (1 - (Y)x”), hence ~((Yx’ + (1 - cr)x”) 2 
dT(ay’ + (1 - (~)y”) = af(x’) + (1 - a)&“). Th e constancy space of this concave 
function contains L = {x : Ax = O}, so if rank A < 12 then rank f < n. 

Before closing this section, it is worth noticing another positive feature of the 
present method in that all the linear subproblems LP(t) have the same constraint 
set (at least for each cycle of iterations, as long as the polyhedron D is 
unchanged). Since only the coefficient vector of the linear objective function 
changes, starting from a basic optimal solution of a LP(t) it is easy to find a basic 
optimal solution of the next. 

5. Linear Multiplicative/Fractional Programming Problems 

We now discuss another important class of nonconvex optimization problems 
amenable to the above dimension reduction technique, namely the so called 
generalized linear multiplicative programming problems which have the following 
formulation: 

P 
(GLMP) minimize f(x) := n (c:x + di)“’ subject to x E D , 

i=l 

where p < n, .si E (1, -l} and D is a polytope in R" such that 

cZ?x + di > 0 (i = 1, . . . , p) for all x E D . (17) 

Consider the set 

lR={xERn:cl~x+dj>O(i=l,...,p)} 

which clearly is convex, open and contains the feasible region. Then the objective 
function f(x) can be replaced by 
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with 

F*(x) = Cl log(c,Tx + di) ) F,(x) = c, log(c,Tx + dj) ) 

where C I indicates the sum over all i such that ci = 1 and C Z the sum over all i 
such that q = -1. Using the fact that log(t) is a concave and increasing function 
of t for 0 < t < +c= it can easily be checked that both functions F,(x) and F*(x) are 
concave on a. Three cases are possible: 

Case 1: E, = -1 for all i. Then Fi is absent and the problem amounts to 
minimizing the convex function --F,(x) over D, which is an easy convex minimi- 
zation problem. 

Case 2: ei = 1 for all i. Then F, is absent and the problem is to minimize the 
concave function F,(x) over D. 

By translating if necessary, assume that 0 E D. For any y < F,(O) the level set 
G = {x E Q : F,(x) 2 y } contains the cone 

K = {x: cc?x 2 0 (i = 1, . . . , p)} . 

Indeed, if x E K then cTx + di 2 d, > 0 for all i, hence x E Sz. Moreover, 

F,(x) = c lo&x + dJ 2 2 log d, = F,(O) > y , 

so that x f G. Therefore, the polar G* of G is contained in the convex cone K* 
of dimension at most p generated by the vectors -cl, . . . , -cP . That is, the 
problem is reduced to one in a space of at most dimension p. 

Case 3: .si = 1 for certains i and -1 for the others, i.e. both F,(x) and F,(x) are 
present. For p = 2, i.e. f(x) = ( clx + d,)l(c?x + d,) the problem has been exten- 
sively treated in the literature. For p > 2 we can rewrite the problem as the 
following concave minimization problem: 

minimize F,(x)-y s.t. xED, F,(x)-~20. 

Assuming, as usual, that 0 E D, F,(O) h 0 (’ i.e. x = 0, y = 0 is a feasible solution) 
and y < F,(O), we see that the level set 

G={(x,y):xESZ, Fz(x)-~20, F,(x)-yzy) 

contains the cone 

K={(x,y):~~TxZO(i=l,..., p), ~50) 

because if x E K then c:x + dj 2 di > 0 (all i), i.e. x E a, and furthermore, 
F,(x) - y 2 C, log(c,rx + dj) 2 C, log d, = F2(0) 2 0, F,(x) - y Z C 1 lo&x + 
di) 2 C, log dj = F,(O) > y. Therefore, G” is a convex subset of the convex cone 
(of dimension at most p + 1) 

K” = {(u, s) E R” x R, : U= -i A,ci (h,ZOVi),sER+} 
i=l 
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Thus, in this case the problem is reduced to a space of dimension Y + 1, where r is 
the rank of the system cl, . . . , cp. 

REMARK. The more general situation when instead of the condition (17) we 
only assume cZrx + dj > 0 Vx E D for each i such that ci = -1 can be handled by 
splitting D into subpolytopes over each of which each function c,Tx + di keeps a 
constant sign. 

EXAMPLE 4. Let us consider in more detail the GLMP problem when all ci = 1: 
P 

minimize f(x) := n (c:x + di) subject to x E D , (18) 
i=l 

where ci E R” and c,Tx + di > 0 (i = 1, . . . , p) for all x E D (as usual, D is a 
polytope in R”). 

For p = 2 this problem which has applications in certain fields of economics (see 
[6,7]) has been investigated by several authors [l, 6,7,8,10,12], and also [18], as 
it came to my knowledge just recently. 

As seen above, the objective function can be replaced by E;(x) = log f(x) which 
isconcaveonfl={x:c~x+di>O(i=l,..., p)} (by hypothesis CR contains 0). 
Assuming 0 E I) and y < F(0) we have also seen that the polar G* of the set 
G = {x E R : F(x) 2 y } is contained in the space generated by -cl, . . . , -cp. 

Letc,,..., ch (h 5 p) be a maximal set of linearly independent vectors among 
Cl,. . . ) cp. 

(a) If h = 1, then G* is a line segment (G* is bounded because 0 E int G). In 
this case, any x E R” can be written as x = AC, + y (assuming c1 # 0) with c:y = 0 
and f(x) = +(A) with +(A) = llf=, ( AcTcl + di). Hence, the problem reduces to 
minimizing the function +(A) over the segment [A’, A”] where A’ = min{ A : AC, + 
y E D, c:y = 0} and A” = max{A: AC, + y E D, cry = O}. Since log +(A) is con- 
cave in A the minimum is attained either at A’ or at A”. 

(b) In the general situation when h > 1, the space that contains G* can be 
identified with Rh via the isomorphism 

h 

t E Rh f, n-(t) = -c t,ci . 
i=l 

If h <p, the initial simplex T, for the PA Algorithm can be defined by a system 
of the form (16) described in Section 4 (using Proposition 1). When h = p (i.e. 
the vectors cl, . . . , cp are linearly independent), T, can be constructed in a 
simpler way, as follows (see Remark (iii), Section 3). 

Observe that since cl, . . . , cp are linearly independent we can always find a 
point w satisfying 

ccTw=--l (i=l,...,p). 

Next, noting that F(0) > y and F( A w) = Cp,, log(- A + di) is a concave decreasing 
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function of A, we can compute 8 > 0 such that F(Bw) = y. Under these conditions, 
-wEintK and 8w~G, hence if we take P,=@w+K, i.e. P,={x:c~xZ-8 
(i=l,..., p)} then 0 E int P,, P, C G and the polar of P, is S, = r( T,), with T, 
being defined by the system of inequalities: 

(19) 

The vertices of T, are obviously: 0 E RP, (1 lB)e’ (i = 1, . . . , p) where e’ denotes 
the i-th unit vector in RP. 

We can state the following. 

ALGORITHM 3 (for solving (18) when cl, . . . , cP are linearly independent). By 
translating if necessary assume 0 E D. Let X be a vertex of D such that y = 
F(X) < F(0). 

0. Define T, by (19). Set &I = Vi = VI = vertex set of T, . Set k = 1. 
k. 1. For each t E V; solve the linear program 

wt 1 maximize -i ti( ci, x) s.t. XED, 

obtaining its optimal value p(t) and basic optimal solution x(t). 
k.2. Delete all t E V; for which p(t) 5 1. Let $!& be the collection of remaining 

elements of Ju,. If %k = 0 then terminate: X is an optimal solution. Otherwise, 
update X and y, using the x(t), t E V;. Go to k.3. 

k.3. Let tk E argmax{ p(t): t E gk}, rk = x(tk). Compute the point ik = O,xk 
such that 

e, = sup A : 2 log( hc,rxk + dj) 5 y 
i 

. 
i=l 

(see Remark (i) below). 
Define 

T k+l=Tkn c t:-E ti(Ci,fk)sl 
i=l > 

and compute the vertex set I’,,, of Tk+, (from knowledge of V,). 
Set V;+l = V,+,\V,, A,+, = %k U VL+l, ktk + 1 and go to k.1. 

REMARKS. (i) In Step k.3, since p(tk)>l, it follows that xkji?‘Pk, hence 
Xk@PP1 2 i.e. min{ clrXk : i = 1, . . . , p} < -8 < 0 and there must exist h > 0 such 
that min{ cT( AXk) + di : i = 1, . . . , p} = 0. That is, the ray { Axk : A > 0} must 
intersect Xl, hence must intersect 8G. Therefore, ? always exists. When p = 2, 0, 
can be computed by solving the quadratic equation 

( Acrxk + d,)( Aclxk + d2) = ey . 

(ii) As with Algorithm 2, the efficiency of the procedure can be enhanced by 
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an appropriate use of concavity cuts (at the completion of Step k.3) and the 
restart strategy. 

(iii) For the case p = 2 often studied in the literature, the computation of the 
sets V, (which is the heart of the procedure and may set limitation to the method 
in high dimension) is quite easy (for example, in dimension 2 all vertices are 
nondegenerate). Therefore, in this special case the above method is remarkably 
simple. In a subsequent paper we will discuss in detail an implementation based 
on this property which will show that the procedure could perhaps compete with 
some existing efficient methods (for p = 2) as the recent parametric method of 
Konno and Kuno [6,7]. 

(iv) Since the lineality space of G is L = {x : C~?X = 0 (i = 1, . . . , p)}, if we 
represent each vector x E R” as x = Cr=, t,ci + y, where y satisfies cTy = 0 (i = 
1 9 . . . > p), then the problem (18) with linearly independent ci can be seen to be 
equivalent to the following problem 

{ 

P 

min Q(t): C t,ci + y E D, c,‘y = 0 (i = 1, . . . , p) 
i=l 1 

where CD(t) = Ilf=, [Cy==, tj( ci , cj) + dJ. The objective function of this problem is 
a quasiconcave function which only depends upon t E RP. Therefore, this problem 
could also be solved by a branch and bound algorithm operating basically in RP 
(but using simplical partition of RP), see [5,16]. However, in this approach the 
linear subproblems for bounding will also involve p + 1 variables (each p-simplex 
in RP has p + 1 vertices!) and, moreover, will have additional constraints gener- 
ated by the conditions cZ?y = 0 (i = 1, . . , p); on the other hand, it is not necessary 
to assume cix + di > 0 (i = 1, . . . , p) Vx E D. 

Conclusion 

The difficulty of a global optimization problem depends to a large extent upon the 
degree of nonlinearity of the problem data (objective function, constraints). 
When this nonlinearity is relatively mild (for example, when a concave function to 
be minimized has a nontrivial lineality space), it is generally possible to transform 
the problem to a space of smaller dimension than the original one by using an 
appropriate dualization procedure. In this paper we have restricted ourselves to 
concave minimization but, as we will show in a subsequent paper, with some 
effort the method can actually be extended to a much wider class of global 
optimization problems. 
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